
Pushing Software Defined Networking to the access
Richard G. Clegg
Dept of Elec. Eng.

University College London
Email: richard@richardclegg.org

Manoj Thakur
Dept of Elec. Eng.

University College London
Email: manoj.thakur@ucl.ac.uk

Jason Spencer
Dept of Elec. Eng.

University College London
Email: contact@jasonspencer.org

John Mitchell
Dept of Elec. Eng.

University College London
Email: j.mitchell@ucl.ac.uk

Raul Landa
Dept of Elec. Eng.

University College London
Email: raul.landa@ieee.org

Miguel Rio
Dept of Elec. Eng.

University College London
Email: miguel.rio@ucl.ac.uk

Abstract—As Software Defined Networking (SDN) and in
particular OpenFlow (OF) availability increases, the desire to
extend its use in other scenarios appears. It would be appealing
to include substantial parts of the network under OF control
but until recently this implied replacing much of the hardware
with OF enabled versions. There are some cases, such as access
networks in which the benefits could be considerable but deal
with a great amount of legacy equipment that is difficult to
replace. In this case an alternative method of enabling OF
on these devices would be useful. In this paper we describe
an architecture and software which could enable OF on many
access technologies with minimal changes. The software has been
written and tested on a Gigabit Ethernet Passive Optical Network
(GEPON). The approach is engineered to be easily ported to
any access technology with minimal requirements made on that
hardware.

I. INTRODUCTION

Software Defined Networking (SDN) is becoming estab-
lished as a vital part of the Internet ecosystem. It is now
used in a huge range of different technologies, for example
inter-data center communication for service brokerage over
large scale distributed and heterogeneous cloud environments
[1]; performance evaluation of virtual network functions mi-
gration across cloud-based edge networks [2]; dynamic traffic
engineering and adaptive network design to efficiently map
logical/virtual topologies on physical network infrastructures
[3], [4].

As video delivery increasingly dominates the traffic com-
position of the Internet (according to CISCO, video in all
its forms should reach 90% of the traffic by 2017 [5]) it is
putting enormous pressure on the access network. If one takes
into account new developments like 4K/8K, virtual reality
and tablet computing, the only realistic long term solution to
deliver this traffic is with fibre to the home/premises (FTTP)
which will most likely be implemented using passive optical
network technologies. This will represent a massive investment
from companies and/or governments and is important that this
infrastructure is upgradable by software at very little cost.
Software defined networks will be crucial to achieve this.

OpenFlow [6] is the best-known SDN technology. It allows
OF enabled devices to communicate with an OpenFlow Con-
troller (OFC) that is capable of, in software, creating rules to

modify how the switch data-plane works. It is relevant because
OpenFlow is an established protocol that is beginning to be
widely deployed in development and production networks.
OpenFlow is an emerging network technology that allows
experimenters to change the behaviour of the network as
part of the experiment. Using the OpenFlow protocol gives
a remote controller the power to modify the behaviour of
network devices. OpenFlow is based on an Ethernet switch,
with an internal flow-table, and a standardised interface to
add and remove flow entries. OpenFlow has certainly moved
beyond the status of research software, for example, Google
use it for WAN and data-centre control [7].

However, for access networks, a particular problem remains.
For logistical reasons, hardware for access networks often
remains in place for a long time. Much of the hardware
is not in a rack in a data centre but in street-side cabinets
and sometimes user premises. Replacement would require not
simply buying new equipment but often getting access to on-
street locations and perhaps customer premises. Therefore if
the access is to get the benefits which SDN and OpenFlow
can provide a new approach is needed which can get the
technology working at line rate using existing hardware with
minimal hardware replacement.

This paper describes a method which can be used with
a subset of access technology (point to multi-point devices)
in order to make it OpenFlow enabled. This method takes
advantage of features of most access technologies which make
them uniquely suited for this approach:

1) Access technologies typically have lower cost “tail-
end” (or “user-end”) devices (also sometimes known
as consumer premises equipment) and a smarter “head-
end” device on the “network” side.

2) Access technologies are usually in operation configured
with a further switch or router (often physically situated
within an exchange or data centre) on the head-end side
of the switch.

In the most usual deployment all traffic from the tail end
devices (even if they are communicating with each other)
goes via the head-end switch. This gives an opportunity at
the head end to modify the traffic to be OpenFlow enabled.



Using the architecture from section III the whole collection of
head-end device, tail-end devices and head-end switch can be
made to appear as if it were a single OpenFlow switch (albeit
one distributed in space). This is achieved by an intermediate
controller which intercepts and modifies OF messages. It is
worth noting that an architecture with such an intermediate
controller is not, in itself, novel (indeed it is core to FlowVisor
[8]).

This work was done within the context of the EU project
ALIEN that has as its aim to bring OpenFlow to new classes of
devices not currently OpenFlow enabled. In some cases this in-
volves a native implementation of OpenFlow on programmable
hardware. In other cases (such as that described here) this
involves an implementation on proprietary hardware which
cannot be reprogrammed. All the implementations within
ALIEN follow a common Hardware Abstraction Layer (HAL)
which is described in [9].

The structure of this paper is as follows: section II describes
in more detail the access networks that would be considered
for this approach. Section III describes, in broad terms, the
architecture used to get the best implementation of OpenFlow
possible with such an approach. The aim is to create a general
approach which can be quickly ported to access technologies
with similar capabilities but different architectures. Section IV
describes the finer design details and implementation problems
which arise in these systems. Section V provides results
from the implementations, showing that the hardware passes
OpenFlow unit tests. Section VI describes the requirements
to port the system to a new device. Finally section VII gives
conclusions and further work.

II. HARDWARE REQUIREMENTS

The system used in our deployment (described more fully in
section V) is the GEPON shown in figure 1. The details of the
exact model and function of the devices is given in section V.
The head-end device is the Optical Line Terminal (OLT) and
the tail-end devices are Optical Network Units (ONUs). The
system is Point-to-MultiPoint, that is to say all traffic from
the OLT goes to every ONU and conversely each ONU can
communicate directly only with the OLT.

The OLT is the most intelligent component in the system
and the ONU are cheaper devices intended for installation in
or near user premises. The OLT is responsible for negotiating
the time division multiplexing between its connected ONUs
and ensuring that newly connected ONU can join the system.
To communicate with each other, traffic from ONU to ONU
must travel via the OLT. The connections between the OLT
and ONU are known as Link Layer IDs (LLIDs).

In its most usual deployment the GEPON has a switch or
router sitting outside the OLT. In figure 2 this has been re-
placed with an OpenFlow enabled switch. Finally, the GEPON
has a management port which enables commands to be sent
for configuring ONUs, adding queuing priority, provisioning
VLANs and so on.

The features described here are typical of access tech-
nologies and similar features are present in systems such as

Fig. 1. The architecture which allows the GEPON to use OpenFlow

DOCSIS, DSLAM/xDSL and even some wireless technologies
using IEEE 802.11. The architecture described here, then, has
applicability much beyond the single system on which it is
implemented. To emphasise the generality of the approach this
paper will usually use the phrases “head-end device” and “tail-
end device” to describe the parts of the access network instead
of the GEPON specific terms OLT and ONU.

III. ARCHITECTURE

This section describes the architecture used to enable Open-
Flow in access technologies. This requires a head-end box
sitting in front of the head-end device, however, as has been
mentioned, this is the usual deployment of such a device.

Figure 2 shows the architecture for the OpenFlow enabled
GEPON. The key changes are as follows:

• The switch outside the OLT has become OpenFlow
enabled.

• An extra helper box labelled HAL (Hardware Abstraction
Layer) has been added (this can be the same physical box
as the OF switch.

• A connection is made from the OLT management port to
the HAL.

The required changes to the system then are the addition of at
least one physical machine which replaces an existing switch.
The solid blue lines (far left and right) represent standard
Ethernet frames. The dashed green lines (in the centre of the
GEPON) are the optical section of the device. The dotted red
lines (top right) represent OpenFlow control messages and the
black piped line (between OLT and HAL) is the proprietary
control path to the management interface of the head-end
device.

Two tricks are key to the system. Firstly the OLT can
provision VLAN end points and associate these with an LLID
and hence an ONU. So, the OLT can set up a VLAN tag which
associates with each ONU. When it receives traffic with that
tag it removes the tag and sends it to the appropriate ONU.
When it receives traffic from an ONU it adds an appropriate
tag.



Fig. 2. The architecture which allows the GEPON to use OpenFlow

Secondly, the HAL acts an intermediate OFC. The external
OFC connects to the HAL and instead of seeing an OLT, ONU
etc, sees only a single distributed switch with many ports: one
port for the OLT and one port for each ONU. For OpenFlow
interactions being sent to the GEPON switch from the OFC
the HAL modifies the command to change which port it refers
to and, if necessary, to add a VLAN tag. For OpenFlow
interactions being sent to the OFC from the GEPON switch
the HAL removes the VLAN tag (if present) and maps the
interaction to the appropriate port.

The HAL also connects to the management port of the
GEPON to set up appropriate VLAN tags and to listen for
messages from the ONU which could indicate ports going
down. A main role of the HAL can be thought of as being
a map between VLAN/port pairs on the real physical system
and virtual ports on the virtual distributed OpenFlow switch.

An example will help clarify. Take the system from figure 2.
This will map to a distributed virtual OF switch with six ports,
one corresponding to the user facing side of each ONU (call
them O1, . . . , O5). Let us call these virtual ports V1, . . . , V5

and one corresponding to the outgoing network on the right
hand side of the figure, call it V6. For simplicity assume that
O1, . . . O5 are mapped to VLAN tags T1, . . . , T5. Let us refer
to the physical ports on the OpenFlow switch as P1 for the
port facing the OLT and P2 for the port facing the exterior.
The map, therefore, held by the HAL is:

P1, T1 ↔ V1

P1, T2 ↔ V2

P1, T3 ↔ V3

P1, T4 ↔ V4

P1, T5 ↔ V5

P2 ↔ V6

Figure 3 shows an example of a packet traversing such a
system. The blue arrows show the outward journey and the
red arrows the return journey of a hypothetical packet in the
system. The external OFC connects to the HAL and knows

Fig. 3. An example traversal of the virtualised GEPON switch

nothing of the internal architecture. As far as the OFC can
determine it is connected to an OpenFlow switch with six
ports.

At (1) a packet enters the system. At (2) the packet becomes
an optical frame at the ONU and goes through the Splitter to
the OLT. At (3) the OLT tags the packet with tag T1 and
passes it to the OpenFlow switch which it enters through port
P1. The OpenFlow switch sees a packet on P1 with tag T1.
The packet matches no FlowMods on the switch and triggers
an OpenFlow PacketIn message which is sent to the HAL
at (4). This accepts the packet, translates the pair P1, T1 to
correspond to port V1 and passes the packet to the OFC at (5).
The OFC application chooses to respond with new FlowMod
rule which forwards all packets from V1 to V5 and to forward
the packet accordingly. At (6) the packet returns to the HAL
to be output on port V5. The HAL translates V5 to a rule to tag
the packet with T5 and output it to P1. At (7) the FlowMod
rule is passed down to the OpenFlow switch. The rule which
was to forward packets from V1 to V5 has been translated to a
rule which forwards packets from P1 tagged T1 back to port
P1 tagged T5. The OpenFlow switch duly forwards the original
packet now tagged T5 (and all subsequent packets from V1)
to the OLT in step (8). In step (9) the OLT sees the tag T5

and removes the tag, forwarding the packet to ONU O5 at (9).
Finally at (10) the packet is output from port V5 with no tag.

While the system is relatively simple to describe there are
a number of deployment considerations, in particular around
port statistics, tagging of VLANs (other than those used by
the mapping) and ensuring continuity of communication. The
implementation details are described in the next section. Of
course the architecture is not tied to VLAN in particular. The
system would work just as well with any alteration to the
packets (which is here referred to as a tag) with the properties
listed below.

• The OpenFlow switch can add the tag and match any
packet against that tag in combination with the real
underlying port.

• The head-end device can add the tag to any packet



entering the head-end device from a tail end device.
• The head-end device can route the packet according to

the tag and remove the tag.
In addition, for a particular access technology to work with
this system another requirement is that all traffic between tail-
end devices must travel via the head-end OF enabled switch.
Any access technology meeting these requirements could
potentially be made OpenFlow aware using this approach.

IV. DESIGN CONSIDERATIONS

Section III described the general architecture used to convert
the GEPON to be OpenFlow enabled. This section describes
the actual technologies used in the deployment, problems faced
and outstanding issues.

The deployment is critically focused on creation of the HAL
for access devices (and particularly the GEPON). Important
to both was the software in the Revised OpenFlow Library
(ROFL)1 and the eXtensible DataPath Daemon (xDPd)2.
ROFL contains interfaces which abstract OpenFlow messages
as C++ functions or, conversely, can generate OpenFlow mes-
sages in C++. It contains C++ abstractions representing most
structures within an OpenFlow device and, as such, is much
more general than an OpenFlow Controller platform. xDPd
is a multi-platform, multi OF version, open-source datapath
focusing on performance and extensibility. It can be used by
coders wishing to create a native OF implementation which
runs directly on their programmable hardware (this was not an
option for the GEPON used here that has proprietary hardware
and is not modifiable to such an extent).

A. GEPON deployment

The functions from ROFL were used as the basis for HAL
on the GEPON which exists as the conversion software known
as the eXtensible Control Path Daemon (xCPd). The xCPd
software is available at https://github.com/richardclegg/xdpd.

The HAL box in the testbed was a standard PC containing
a NetFPGA card programmed as an OpenFlow switch (in the
final deployment this will also run the xDPd software but the
intermediate version runs the Stanford OpenFlow 1.0 switch).
This means that the datapath is pure hardware and hence has
no slowdown. The xCPd runs on the PC as software and
connects to the OpenFlow instance running on the NetFPGA
and also offers external access to an external OFC.

B. Minimising hardware specific requirements

Some OpenFlow requirements can only be achieved via
interaction with the hardware. An obvious example would
be the initial provisioning of VLANs for system. However,
there are more subtle examples where a “pure” implementa-
tion using only xCPd, xDPd and VLAN provisioning does
not work. OpenFlow 1.0 messages can be split into three
groups according to how they will work with xCPd and the
described architecture. The first group is those that simply
work using this architecture without needing translation. For

1https://www.codebasin.net/redmine/projects/rofl-core/
2https://www.codebasin.net/redmine/projects/xdpd/

example the EchoRequest and EchoReply messages which
simply establish a connection. Those messages become an
EchoRequest from the controller passed to xCPd, passed down
to the OpenFlow switch and, conversely, an EchoReply passed
back up from the switch to xCPd and onward to the controller.
This group includes: Hello, EchoRequest, EchoReply, Vendor,
FeaturesRequest, FeaturesReply, BarrierRequest, BarrierRe-
ply, GetConfigRequest, GetConfigReply, SetConfig, PortStatus
and QueueGetConfigReply.

The second group is those messages which require transla-
tion into the VLAN format. For example, a FlowMod cannot
typically be directly sent down from xCPd to the switch. A
FlowMod consists of a match and an action. Both the match
and the action require translation so that, for example, if the
FlowMod match is against a virtual port provided by xCPd
this must be translated to a match against a real port and (if
that port is the port facing the OLT) a VLAN tag. This group
includes: PacketIn, PacketOut, StatsRequest/StatsReply (for a
FlowMod), Error and FlowRemoved.

The third group is those messages which cannot be “faked”
using the VLAN technique: PortMod, StatsRequest/StatsReply
(for a Port) and QueueGetConfigRequest. These messages
work as expected on “real” ports – that is ports which
correspond to a single outgoing port on the real underlying
hardware rather than those mapped with VLANs. However,
for virtual ports then these messages present a problem, for
example, if a configuration change requests a port to be taken
down, then taking down the underlying physical port would
remove other virtual ports as a side effect. The best way
to reliably implement the request to take that port down
is via a request to the head-end device made through the
management interface and xCPd is configured to connect to
an external module which translates these messages into ap-
propriate head-end management commands (these are usually
proprietary and hence will need translating individually). A
StatsRequest/StartReply targeting a virtual port cannot get
accurate statistics by querying the underlying physical port
as this would provide statistics aggregated over all virtual
ports sharing that physical port. In practice this means that
a query for the statistics related to a single tail end device
would have to, in reality, query the underlying hardware. This
can be achieved on the OLT via its management interface and
it would be expected that similar requirements can be achieved
for most access devices.

Apart from the messages from the previous section, the
current xCPd design can achieve all OpenFlow actions with
the exception of the optional Enqueue action. Problems arise,
however, when users require VLANs across the hardware as
VLANs are being used as a method to identify virtual ports.
QinQ (802.1ad) allows VLAN tags to be “stacked” (a tagged
packet can be tagged with an outer VLAN header) and no
problem arises. Without QinQ if a packet arrives from the
tail end with an unknown VLAN tag then there is no way
to know from which virtual port this packet arrived unless
it has been preconfigured in the head-end device. Packets
arriving at the head-end with a VLAN tag present a problem



if they have to exit via a tail end device. The tag must be
replaced (to ensure the packet is routed to the correct tail
end device) unless the VLAN has been provisioned at the
head-end device. Obviously tagging with a VLAN which is
currently in use by the xCPd tagging system introduces its
own problem. These problems could be avoided if other (non
VLAN) tagging mechanisms were used but such tagging might
bring problems of its own. This porting requirements for xCPd
to run on hardware other than the specific model of GEPON
described here are discussed in more detail in section VI.

V. TESTING RESULTS AND PORTING REQUIREMENTS

The previously described architecture has been implemented
and tested. The state of the art unit tests for OpenFlow are
those in OFtest3. This tests various OpenFlow functionalities
separately by connecting to the switch under test and generat-
ing events (PacketIn, PacketOut etc). OFtest acts as the OFC
for the switch, makes a connection and runs its tests, giving
output to say whether each test has passed or failed.

The GEPON design was illustrated in figure 1 where the
GEPON is the set of devices within the larger dark blue box
on that diagram. It consists of three types of device:

1) The Optical Line Terminal (OLT), in this case the Planet
technologies EPL-10004;

2) The Splitter, in this case Planet technologies EPL-SPT-
32; and

3) One or more Optical Network Units (ONUs): Planet
technologies EPN-1025.

The head-end switch in the test system was a standard PC with
a NetFPGA card that can be flashed to act as an OpenFlow
1.0 switch. This PC also ran the xCPd software. Behind the
tail-end ONUs in the test system was another PC with a four
port NIC which allowed up to four test ONUs to connect to it.
In the test configuration the internet-facing port of the head-
end PC was connected back to this PC to allow OFtest to put
traffic into all ports on the distributed switch.

The OLT takes ordinary IEEE 802.3u Ethernet at its external
interface and converts it to/from optical signals that go to and
from the splitter. The splitter is a passive device which takes
that signal from the OLT and optically power divides it to all
the ONUs in the system. All optical signals from the ONUs,
similarly, are sent onwards to the OLT. Finally the ONUs
have external IEEE 802.3u Ethernet interfaces and convert the
electrical signal to optical to send to the splitter. They use time
division multiplexing to avoid clashes and to determine which
traffic should be received by which ONU. Wavelength division
multiplexing is used to separate upstream (to the head-end) and
downstream traffic.

A. Tests on GEPON

The main testing for the GEPON required wiring the system
so that OF test could access all the “ports” of the switch,

3http://www.projectfloodlight.org/oftest/
4http://www.planet.com.tw/en/product/product.php?id=25817
5http://www.planet.com.tw/en/product/product.php?id=22826

Test Result
Echo Passes using xCPd
EchoWithData Passes using xCPd
PacketIn Passes on systems with QinQ. On sys-

tems without, one part of this test fails
when VLAN tags are used

PacketInBroadcastCheck Passes using xCPd
PacketOut Passes using xCPd port mapping
PacketOutMC Passes using xCPd port mapping
FlowStatsGet Passes using xCPd port mapping
TableStatsGet Passes using xCPd
DescStatsGet Passes using xCPd
FlowMod Passes using xCPd port mapping
PortConfigMod Requires hardware specific code to

pass correctly
PortConfigModErr Requires hardware specific code to

pass correctly
BadMessage Passes using xCPd
TableModConfig Passes using xCPd

TABLE I
BASIC OFTEST UNIT TESTS

that is to say the outgoing port from the OpenFlow switch
next to the OLT and a number of ONUs. This was achieved
by connecting each of the ONUs under test into a network
interface on a single PC and connecting the outgoing port from
the OpenFlow switch into another port on the same switch.
In these tests we used three ONUs so the entire GEPON plus
switch system presented as a four port OpenFlow switch. Table
I shows the results of the tests.

As can be seen, the majority of basic tests in OFT are passed
by xCPd with no need to write code specific for the hardware.
The PacketIn test fails because one part of that test uses a
VLAN tagged packet. This fails on hardware that does not
implement QinQ if the tagged packet traverses the head-end
of the hardware as the new VLAN strips the original packet
header (a system with QinQ would add a new VLAN header).

VI. PORTING REQUIREMENTS

A. Porting requirements
The aim of this work is not simply to provide a way to

get OpenFlow working on one specific model of GEPON but,
instead, to provide the simplest possible method for a large
class of devices to become OpenFlow enabled. For complete
OpenFlow 1.0 functionality, any access device which supports
VLANs (or any equivalent tag matching the requirements
given at the end of section III) could be made to implement
OF1.0. However, certain code would need to be provided that
is hardware specific (communication along the black line to
the management port of the OLT in figure 2). This requires
the following code:

1) Code to query the head-end device for port statistics
specific to the tail-end devices. In the absence of this
then port statistics will be given for the underlying
physical port and hence, for example, the number of
packets, bytes and errors will be a total over all the tail-
end devices.

2) Code which can modify the links to the end user devices
as required by the OpenFlow PortMod command.



3) In OpenFlow 1.0 queue configuration “takes place out-
side the OpenFlow protocol, either through a command
line tool or through an external dedicated configuration
protocol”. OpenFlow does, however, provide the ability
to query queue configurations and optionally provides
an action to enqueue packets to a given queue. Queries
for queue configurations could be achieved in two ways:

a) Ensure that a user configuring the queue on the
underlying hardware also gives xCPd the same
information.

b) Write code to query the head-end device about its
queue configurations (this is optional in the OF 1.0
specification).

4) Optional: Code which automatically configures tags on
the head-end device on start up.

It should be noted though that in some cases certain equipment
may respond relatively slowly (in terms of the timescales
considered for network deployment) and this could cause
buffering problems if the hardware response to these configu-
ration commands is too slow.

If the group porting to the new hardware do not perform the
steps then it will have certain implications. Failure to do 1)
will mean that xCPd will fall back to querying the underlying
physical port for statistics (or with a configurable option, fail to
return any statistics) and statistics returned will be the sum of
the statistics on the virtual ports associated with that port. (In
figure 3 then V6 will get accurate statistics and V1, . . . , V5 will
return the same answer which is the sum of their statistics.)
Failure to do 2) will again mean that the PortMod will fall
back to the underlying physical port (or with a configurable
option, fail to return any statistics), so, for example, if that
port is shut all physical ports are shut. Failure to do 3) will
mean that OpenFlow will not be able to operate with queues
(which is an optional feature in OF1.0). Failure to do 4) will
simply mean that the user needs to make a one off adjustment
to the device through its management interface.

Overall, then, the system should easily port to any access de-
vice with the characteristics of the GEPON system in figure 1.
Devices that do not support QinQ (VLAN stacking) can never
fully make use of VLANs. Without writing hardware specific
code the majority of compulsory OpenFlow 1.0 features are
supported. With hardware specific code then all OF1.0 fea-
tures can be supported. The deployment requirements are an
OpenFlow switch sitting outside the access network and the
xCPd software. It is not important where this runs and it could
be co-located with the OpenFlow Controller for the switch or
run on the same box as the switch.

VII. CONCLUSIONS AND FURTHER WORK

This paper has described work to enable OpenFlow for
access hardware meeting certain requirements. The architec-
ture presented uses tagging (in specific VLAN tags) to allow
an access network consisting of several devices to masquer-
ade as a single distributed OpenFlow enabled switch. This
involves introducing an OpenFlow switch outside the head-
end of the access network and running intermediate control

software (known as the eXtensible Control Path daemon,
xCPd) that speaks OpenFlow northbound and southbound
and sits between the OpenFlow Controller and the switch
modifying OpenFlow messages. The architecture has been
implemented as software for OpenFlow 1.0 using the Revised
Open Flow Library (ROFL). This software has been tested
and passes OpenFlow unit tests from the test suite OFtest. For
the majority of OpenFlow functionality the software would
work unmodified on a large amount of access hardware given
appropriate (very simple) configuration. For the remainder of
OpenFlow functionality, extremely simple drivers can be writ-
ten to interface directly with the hardware via its management
interface. This means that implementing this system for new
hardware which meets the requirements should be possible in
an extremely short time span enabling OpenFlow functionality
to be pushed to a large variety of access devices.

Development of the xCPd design is ongoing. In particular a
porting guide is being produced to allow developers wishing
to bring xCPd to new hardware to produce the required code
for their hardware. Current work is expanding the code to
work with OpenFlow 1.2 and to include instructions for groups
porting to their own hardware.

Acknowledgements

This research has received funding from the Seventh Frame-
work Programme of the European Commission, through the
ALIEN (317880) project.

REFERENCES

[1] M. Mechtri, I. Houidi, W. Louati, and D. Zeghlache, “Sdn for inter cloud
networking,” in Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, 2013, pp. 1–7.

[2] F. Callegati and W. Cerroni, “Live migration of virtualized edge networks:
Analytical modeling and performance evaluation,” in IEEE SDN for
Future Networks and Services, 2013, pp. 1–6.

[3] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “Virtual links mapping in future sdn-enabled
networks,” in IEEE SDN for Future Networks and Services, 2013, pp.
1–5.

[4] J. Mueller, A. Wierz, and T. Magedanz, “Scalable on-demand network
management module for software defined telecommunication networks,”
in IEEE SDN for Future Networks and Services, 2013, pp. 1–6.

[5] Cisco systems, http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-network/white paper c11-
481360.pdf, 2013.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[7] “Openflow@google,” Presentation at Open Networking Summit
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf,
2012.

[8] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep., Tech. Rep., 2009.

[9] ALIEN Consortium, “Hardware abstraction layer (hal)
whitepaper,” Available from ALIEN website: http://www.fp7-
alien.eu/files/deliverables/ALIEN-HAL-whitepaper.pdf, 2013.


